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CHAPTER I
INTRODUCTION

Many present day alrcraft and gulded missiles are
equipped with low-aspect-ratio wings of a delte plan form,
Since all of these alrcraft and missiles have high perform-
ance characteristics, a flutter analysis 1s usually necessary.
However, the flutter analysis depends to a great extent on
the accuracy of the free-free natural modes and frequenciles
of the wing. These natural modes and frequencles can also
be useful in other dynamlc problems, such as landing impact
and gust loads. In the past, when alrplane wings usually
had high aspect ratios, the natural modes and frequenciles
could, in general, be found by methods using simple beam
theory. For airplanes with low-aspect-ratio wings, the
vibration problem is complicated by chordwise bending of the
wing which must be taken into account. The methods using
beam theory do not account for this chordwise bending; thus,
for a delta wing or any low-éspect-ratio wing, recourse must
be made to more elaborate methods to determine the natural
modes and frequenciles.

In the vibration problem, one of the first methods
that presents 1tself 1s the direct solution of the partial-
differential equations of equillibrium of the structurs.

However, even for a thin isotropic plate, the direct solution



of the differential equatlon is extremely complicated and
solutions for only a few isolated boundary conditicns have
been obtalned. (See, for example, ref. 5.) For a bullt-up
wing the differential equation approach would present insur-
mountable difficultlies. Another method widely used in vibra-
tion anaslysis 1is based on the Rayleigh-Ritz principle. This
principle says that the maximum strain energy minus the
maximum kinetic energy of the wing must be an extremum. To
apply this principle to a specific structure, the flrst step
1s to express the strain and kinetic energy of the structure
in terms of the deflection. The deflection 1s then repre-
gsented by a serles expansion of functions with unknown
coefficients; the strain energy minus the kinetic energy 1is
differentiated with respect to each of the unknown coeffi-
clents of the series and the result set equal to zero. In
general, it 1s necessary to use a filnite series. If the
series has n terms then there will be a set of n equa-~
tions from which the n unknown coefficlents and the
frequency can be found. The application of the Rayleigh-
Ritz method to a constant thickness rectangular plate 1is
presented by Timoshenko in reference 8 and also by D. Young
in reference 12. The Raylelgh-Ritz method has a disadvantage

in that the coefflclents of the set of equations are



5
integrals which consist of the functions which were used in
the serles expansion. The labor involved in evaluating
these lntegrals becomes excesslve when very many terms are
used iIn the series,

A method which shows conslderable promise for the
vibration analysis of complicated structures is the influence
coefficlent approach. An advantage that this method has
over the other two methods 1s thét the complicated vibration
problem is divided 1lnto several simpler parts: (1) the
determination of the deflections of the structure in terms
of the static loads placed on 1it, (2) the determination of
the maximum dynamlc loads acting on the structure, and
(3) the substitution of the dynamic loads for the static
loads. Another advantage of this method is that the influ-
ence coefficients can be used for other purposes, such as
static aerocelastic problems.

The determinatlion of the natural modes and frequencies
by the influence coefficlent approach requires that the
influence coefficients be known. For thin solid wings of
low aspect ratio, static deflectlon analyses have been made
by using the well known plate theory. A direct attack on
the partial-differential equation of a constant thickness
plate by using the separation of variables procedure 1s
‘given in reference 11l. A method which allows for a gradually

varyling thickness and chord is presented in reference 2.



In reference 2, the deflection of the wing was represented
by a power series 1In the chordwise direction with the
coefficlents of the power series as functlons of the spanwlse
direction. The first term of the bower serles represents the
transverse displacement, the second term represents the
twist, the third term represents a parabolic curvature in
the chordwise direction, and so forth. In reference 2, only
the first two terms of the power series were used. An
expression was then written for the total potential energy
of the structure; the total potentlal energy being defined
as the straln energy of bending minus the potential energy
of the lateral loads. The expression for the deflection was
then substituted into the total potential energy and the
calculus of variations used to minimize the total potential
energy with respect to the coefficients of the power serles.
When this was done, there resulted two ordinary differential
equatlions which could be solved to give the deflection in
terms of the loads. A method for determining the deflectlons
of plates by starting with the partial-differential equatlons
of plate theory and applying the Galerkin procedure was
presented by Schuerch in reference 3. Since Schuerch
expressed the deflectlon of the wing by the same power
series of two terms as used 1n reference 2, his results were

very similar to those found in that reference.



An extension of reference 2 to lnclude parabolic
chordwise deflections is given in reference 6. The method
of analysis of reference 6 is ildentical to that used in
reference 2, That 1s, the total potential energy of the
plate with lateral loads was written, the power-series shape
substituted into it and it was then minimized with respect
to the coefficients of the power serles. In this case,
three ordinary differentlial equatlions resulted. Experimental
results for the deflections of several triangular plates of
different shapes under uniform static loads are included in
this paper. When the theoretical deflections using two and
three terms are compared with the experimental deflections
1t 1s seen that there 1s good agreement, with, of course,
better agreement for the three term solution.

The methods mentloned sbove are applicable to thin
low-aspect-ratio solid wings. If a bullt-up wing is very
thin and has 9losely spaced spars and ribs and a thick cover
sheet, then it§ influence coefficients can be found by
consldering it as a solld wing and then using plate theory.
If the bullt-up wing does not have closely spaced spars and
ribs, then serious errors can result if plate theory 1is used.
For these cases, 1t 1s necessary to use methods which account

for the spars snd ribs as separate entltles instead of



considering their stiffness as simply adding to the cover
stiffness. Several such methods have appeared in the
literature and are listed below.

(1) Schuerch's method (ref. Li): Schuerch has
developed a "wide beam theory™ based on simple beanm
equations but which gives an approximate expresslon
for the deflections of low-aspect-ratio wings. His
method was to ldeallze the structure lnto a group of
alternating simple beams and torsion tubes running
in the spanwise direction. The beams represent the
normal load carrying abllity of the spars and cover.,
The torsion tubes represent the shear carrying
capacity of the cover. Since the wing is only allowed
a translation and rotation, the flexibllity of the
ribs 1s neglected.

(2) Levy's method (ref. 1): Levy's method 1is
one of consistent deformations; that is, the loads in
terms of the deflections for each individual wing
component are found. The resulting loads are then
added together so that the loads at all the points on
the wing afe found 1n terms of all the deflectlons.
The wing components that are considered -are: (a) the
spars and cover sheet in spanwise bending, (b) the
ribs and part of the cover sheet in chordwlse bending,

and (¢) the cover sheet in torsion.



(3) William's method (ref. 10): William's has
outlined a method which uses the partlal-differential
equations of plate theory. However, instead of
directly solving the partial-differentlial equations
he replaces the derlvatives with finlite differences.
This results in a large order simultaneous set of
equations which can be solved by conventional methods.
The disadvantage of William's method 1is that 1t 1is
applicable only to wings which have closely spaced
spars and ribs and a thick cover sheet.

() stein-Sanders method (ref. 7): The Stein-
Sanders method 1s essentlially an extension of the
method presented in references 2 and 6. In this
method, the spars and ribs are considered as separate
entlties., Three terms of the power series are agaln
used to represent the deflectlion of the wing, but the
total potential energy to be minimigzed now lncludes
the strain energy of the spars and ribs. In order to
simplify the calculatlions and make the procedure
readily applicable to any wing, difference-equation
methods are used in the process of expressing and
minimizing the potentlal energy. Thus, there 1is
yielded a system of simultaneous algebralc equations

which relate the deflections to the lateral losads.
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The coefficients which relate the deflections to the
lateral loads are called the stiffness coeffliclents
and the matrix of the stiffness coefficients 1s called
the stiffness matrix., The influence coefflcient
matrix 1is obtalned by inverting the stiffness matrix.
In the present paper, a comparison will be made
between the experimental and theoretical natural modes and
frequencies of vibration of & bullt-up delta wing. The
theoretical calculations will employ the influence coeffi-
clent approach where the influence coefflclents are obtalned
from the method presented by Stein and Sanders (ref. 7). As
hes been mentioned previously, the Stein-Sanders method
treats the cover sheets, spars, and ribs as separate entitiea.
The strain energy expression of these terms and also a general

outline of the Stein-Sanders method 1s given in Appendix A.



CHAPTER II

DESCRIPTION OF BUILT-UP DELTA WING SPECIMEN

The bullt-up delta wing specimen to be analyzed 1s
considered repreéentative of the load carrying structure of
a real delta wing. The center section of the wing, where
the fuselage would fit, 1is of constant thickness. Outboard
of this center section there 1s a constant spanwise taper;
the chordwilse sections are of constant thickness. The
internal structure consists of spars and ribs. (See
Figure 1.) There are five spars which are perpendicular to
the center line of the wing and one spar which is Inclined
at a L5° angle to the center line., Spars 1, 2, and 3 have
ean I type cross section; spars li, 5, and é are channel
shaped. The ribs are located at 8~inch intervals and are
parallel to the center line of the wing. All of the ribs
are channel shaped. It should be noted that in Figure 1,
rib No, 2 1s shown as only one rib; however, 1n the actual
wing, two ribs which were very close together were located
there. Several other small changes have been made 1n drawing
the ldealized structure shown in Figure 1, but these changes
should not effect the accuracy by which this ideallzed
structure represents the actual structure.

The internal structure of the wing was covered by a

constant thickness sheet of aluminum which was riveted to the



Sym X
Ab%et Spar No. 5f
|——I6—-1
7 4
45° Spar No. 6
24 g \(
< :
5
Bl ;
24 |
0l 2345678 sw0niziz3 Y
A-| Rib No.
A
24 \
4 i
Al
24
|
Al
112
53 | 5
[j' 1 | T i T 7 7 7 P
| | | | | 1 | | i | | ] T 0 ] ‘
t [
|2 el oLl
"— 2 _" 8 ’I 8 "
% | |
Section A-A Section B-B Section C-C
FIGURE 1

INTERNAL STRUCTURE OF WING

10



11

spars and ribs. There are a total of 16 stringers which
were riveted to the outside of the cover. The location of
these stringers 1s shown in Figure 2.

A brief discussion of the physical properties and the
stiffness and mass properties of the wing components 1s
given below.

(1) Physical properties: The wing is constructed
entirely of 2 ST aluminum alloy. The physical
properties of 24ST that will be needed in this paper

¢

are shown below. (See ref. 13.)

Young's modulus of elasticity, lb/in.2 . . 10.6 x 108
Welght, 10/104” o o o o o o o o o o o o o 0.100

Polsson's Patlo o o s o o o o o o @ o o o 1/3

(2) Spars: The weight of the spars was found by
using actual measured dimensions and dimenslons which
were slightly changed from the original specifications.
In this way, a calculated spar weight was obtained
which was equal to the measured spar weighf. By
using these dimensions, the weight per inch and moment
of inertia of the spars at 8-inch intervals along the
span were calculated and are tabulated in Table I.

The welght listed is the weight per inch of a cross
section normal to the y-axis and Ilncludes the weight
of the heads of the rivets which were used to fasten

the cover to the spars. The rivet-head weight was
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SPAR WEIGHT AND MOMENT OF INERTIA

TABLE I

Spar No. 1 Spar No. 2 Spar No. 3 Spar No. b Spar No. 5 Spar No. 6
Station —= = = = = = ~ ~ % = o
ii; Wiy I]_y Woy IW w5y I5y Why Ilty wsy I‘jy w6y I6y
1b/in. i | w/in. | it | win. | e | wine | o | wine | o | wjin. | ik
0 0.15715 | 7.7880 | 0.14550 | 6.8764 | 0.17323 | 8.9730 | 0.08469 | 3.6300 0.05936 | 2.3006
8 15715 | 7.7880 | .1ks550 [ 6.8764 | .17323 | 8.9730 | .08469 | 3.6300 | .05936 | 2.3006
16 .15715 | 7.7880 14550 | 6.876k4 .17323 | 8.9730 .08469 | 3.6300 .0593%6 | 2.3006 | 0.08%395| 2.3006
2l .15498 | 6.8180 L1331 | 6.0047 .17099 | T7.8705 .0824h | 3.1572 .08083| 1.9960
32 .15281 | 5.9173 L14113 | 5.1969 .16876 | 6.8453 .08020 | 2.7223 07772} 1.7180
Lo .15065 | 5.0850 213894 | k. 4520 .16652 | 5.896k 07795 | 2.3242 LO7H60| 1.L4654
48 14848 | 4.3199 .13676 | 3.7687 .16428 | 5.0225 .07149 | 1.2371
56 Lh632 | 3.6210 13457 | 3.1462 .16204 | 4 .2023 .068381 1.0321
6l Lk |2, 9872 .13239 | 2.5832 .15980 | 3.4961 .06526 .8l
T2 .14198 | 2.h175 .13020 | 2.0789 .06215 .6878
80 .13981 | 1.9108 .12801 | 1.6319 L0590k 5462
88 .10581 | 1.1379 .12583 | 1.2h1k .05592 L237
96 .07182 .5955 .05281 3191
104 . 06965 4159 .0k970 #2515
112 .06748 .2697 .04657 159k

¢T



i1
determined by accurately approximating the number of
rivets and then multiplylng by the weight of the heads
of one rivet. The moment of inertia listed in Table I
is for a cross section normal to the spar.

(3) Ribs: The weight and moment of inertia of
the ribs are given in Table II. The weight listed 1s
the welght of each rib and includes the weight of the
cover-rib rivet heads.

(l4) Cover sheet: The nominal cover sheet thick-
ness speciflied was 0.072 inch, but the measured
average thickness of the cover was found to be 0.0696
inch. A dimension which will be useful in later
calculations 1s the height of the middle plane of the
cover above the neutral surface of the wing. This
height which 1s called 2z 1s tabulated in Table III.

(5) Stringers: The stringers are 3/, x 3/ x 1/8
Inch standard angles. The measured cross sectional
area of the stringers was found to be 0.1689 sqﬁare
inch. This area was obtained by first weighing all
the stringers and then dividing this weight by the
product of the stringer length and density. The
welght of one stringer was then found by multiplying

the measured area by the density and adding the weight



TABLE IT

RIB WEIGHT AND MOMENT OF INERTIA

Rib No. 1o ip .k
0 3.3690 1.0604
X 3.3690 1.060k4
2 9.7126 3.0694
3 2.9136 .9064
4 2.4650 STOTT
5 2.0867 L6435
6 1.7821 5551
i 1.4446 4356
8 1.1811 3504
9 .9026 2767

10 .6691 .2136
1L 4706 . 1604
12 .2820 L1164
13 <1135 .0807

15



TABLE ITITI

COVER SHEET HEIGHT

i
Station Cover height

L4 o
in. in.

0 2,7152

8 2:T152

16 2. T152

2k 2.5593

32 2.4033
40 2.247h4
48 2.0915

56 1.9356

6l 1.7797

72 1.6238

80 1.4678
88 L:35119

96 1.1560
104 1.0001
ph 72 .BulL2

16



17
of the cover-stringer rivet heads; this weight was
0.01920 1b/in. The moment of inertia of one stringer,
f, about the neutral surface of the wing and the
number of stringers on the top and bottom cover at
8 inch spanwise intervals are listed in Table IV.

(6) Reinforcements snd spar to rib rivets: 1In
the construction of the delta wing, several small
reinforcements were added at critical points, and
their weight should be taken into account. Also, the
rivet-head welght of the rivets used to connect the
spars to the ribs should be included in the welght
analysls. The location and weight of the reinforce-
ments and the spar-to-rib rivets are tabulated 1n
Table V.

Table VI 1s inclﬁded to show the total calculated
weight of the various components and their percentage weight
of the total calculated weight. By adding up the weight of
the components, the total calculated weight was found to be
about 408.6 pounds. It is interesting to note that the rivet-
head weight was about 5 per cent of the total weight. A
total measured weight of L 09 pounds was obtained by weighing

the wing after it was completely assembled.



TABLE IV

STRINGER MOMENT OF INERTIA

Station
y
in. in.u
0 1.4969
8 1.4969
16 1.4969
2l 1.3hk2
32 1.1997
4o 1.0635
48 .9%54
56 .8156
6l . 7039
72 .6005
80 .5053
88 4183
96 3395
104 2689
112 0

>

32
32
32

26
2l
22
18
16
14

'.J
O ANN©Oo

18



WEIGHT OF REINFORCEMENTS AND SPAR TO RIB RIVETS

TABLE V

Chordwise location

Station
¥ X = x = 24 x = 48 x =72 x = 96
4 1
W(T)(0,y) | w(®)(@n,y) | v(Pus,y) | w72,y | wW(F)96,5)
1b 1b 1b 1b 1b
0 0.02634 0.0263k4 0.02634 0.00993 0.48893
8 .02634 .02634 .0263h .0099% .00993
16 .05814 .05814 .05814 .01986 .28836
2l .02470 .02470 02470 .00993
32 .02163 .02163 .02163 .00851
4o .01999 .01999 .01999 .00851
48 .01693 .01693 .01693
56 .01387 .01%87 .01387
6l .01223 .01223 .00567
72 .00918 .00918
80 .0075k4 .0075k4
88 .00284 .00284
96 .0028)4
104 .00284
112 0

6T



TABLE VI

CALCUIATED WEIGHT OF WING COMPONENTS

Per cent

Weight
e 1b of total
Spars 87.181 21.54
Ribs 58.15L .23
Cover sheet 180.287 by 12
Stringers 80.313 19.66
Reinforcements 1.748 L35
Spar to rib rivets .900 e
Total weight 408.583 100.00

20



CHAPTER III
DESCRIPTION OF TEST SET UP

The experimental determination of the natural free=
free modes and frequencies of the bullt-up delta wing was
carried out by Mr. Eldon E. Kordes in the Structures Research
Laboratory of the NACA. To obtain the free-free condition,
the wing was supported by two wires which were connected to
an overhead scaffold. A picture of the wing in 1ts free-
free condition 1s shown in Figure 3. The wing was vibrated
by four symmetrically placed shakers connecﬁed to the wing.
These shakers could apply a maximum force of 50 pounds and
had a maximum travel of 1 inch; their frequency range was
from 2-1/2 to 500 cycles per second. The shakers were part
of the MB Manufacturing Co. C-1l-S exciter system. This
system allowed control of the force applied by each shaker.
The control panel of the exciter system 1s shown on the left
side of Figure 3.

The phase relation between dlfferent points on the
wing and the amplitude of the points during a vibration test
was obtained by mounting MB Type 12l self-generating velocity
pickups on the wing. These pickups are shown in Figure 3.
The "pickups" on the left side of the wing with no lead-in
wires attached to them are welghts which were used to balance

the weight of the pickups on the right side. However, two

2l
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pickups were located on the left side to provide a check on
the symmetry of the modes. The output voltage from the pick-
ups was fed into an osclilllograph. The control panel used to
select the pickup voltage 1s the small cabinet in Figure 3.
The natural frequencies of the wing were determined by
varying the frequency of the shakers until the trace of the
pickup voltage on the osclllograph reached a maximum ampll-
tude. The voltage from a pickup attached to a shaker was
fed into a C. G. Conn model GT=-2 Stroboconn from which the
frequency in cycles per second was determined. The node
lines were found by moving a portable pickup over the wing
untll the oscillograph showed that the amplltude was zero.

The natural frequencies of the wing were found with
the shakers and pickups attached; therefore, it 1ls necessary
to include their weight in with the wing weight to be used
in the vibration analysis., Each shaker attachment welghed
2 pounds and each pickup weighed 0.7 pound. The total '

welght of these accessorles is shown below,

L Shaker attachments, ID + o = s ¢ s s o o o & o s« b 8.0
26 Pickups, lb L] ® ° o ° L] ° L] ° L] L] L) ° L] ® ° ° ° L] 18 .2

Total accessory welight, 1b ¢« « ¢ « o o o o o o o o« 2642



The total welght of the wing during a vibratlion test 1is

shown below,

Measured Calculated
Total welght, 1D < & « & « s o o o « LO9 ,08.583
Accessory weight, 1D « o« o « « o o o 2642 26,2
Total weight during a vibratlion
BOET, (L0 e b v b1 e e [ wt aheH W Ty L1552 L3L.783

Since it 1s important to know the distribution of the shaker
attachments and pickups in the theoretical analysis, the
location and weight of the shaker attachments and pickups

are given in Table VII,



TABLE VII

SHAKER ATTACHMENT AND PICKUP WEIGHT

Chordwise location

Sta;ion x=0 x = 24 x = 48 X = T x = 96
i, | o) | Wy | W sy | w(re,m| vos,y)
1b 1b 1b 1b 1b
16 .70 .70 =g (0] o) .70
4o .70 .70 2.00 .70
64 o) .70 .70
88 2.00 .70
L2 .70




CHAPTER IV

DISCUSSION OF INFLUENCE COEFFICIENT APPROACH

Since the theoretical natural modes and frequencles of
the delta wing are to be found by the influence coefficient
approach, it is felt worthwhile to consider this method 1n
detail for a simple example problem. The example problem to
be treated is that of determining the natural modes and
frequencies of symmetric vibration of a free-free beam with
variable stiffness propertles. A sketch of the beam in a
symmetrically deflected position is shown below, In this
sketch m 1s the distance of any point on the beam above
the center line point and w 1s the actual deflection of

the beam above 1lts position at rest.

[

< 2L

When the natural modes and frequencies are to be
found by the 1nfluence coefficient approach, the first thing

needed is the influence coefficlents. However, for a

26



et
free-free beam, the influence coefficients can not be found
directly. What can be done however, 1s first to find the
influence coefficients for the beam in some fixed condition.
Then by releasing the beam and by considering the appropriate
dynamic equilibrium conditions, these "fixed" influence
coefficients can be used to find the free-free natural modes
and frequencies. For this analysis, the "fixed"™ influence
coefficients will be found by considering the beam to be
simply supported at the center line and acted on by symmetric
loads. The beam, simply supported at the center line, with

two symmetric loads 1s shown below.

|
| ;

The method used to find the "fixed" influence coefficients
requires that the deflections of the beam be determined at
equal intervals. Also, if the beam has a continuous loading,

then this continuous loading must be replaced by equlvalent
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concentrated loads placed at even intervals, e, such &s

shown below.
P_1 Pp hPo Py =

!
: 33 3% T

ZE | Nel
=1 1 2 3 m N-1 N
]

The "fixed" influence coefficients will be found by the
method used by Stein and Sanders in reference 7. In this
example, the power series for the deflection will only have
one term and the expression for the total potential energy
will only contain the energy of bending of the beam. If the
beam is acted on by concentrated loads, then the total

potential energy of the beam, w, 1is
T = f EI(y)(m )dy-ZPmnm

The principle of minimum potential energy says that the
deflection shape which satisfies equilibrium is the one for

which % 1is a minimum. The method used by Stein and Sanders .
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to minimize =w was first to replace the integration by a
summation in accordance with the well-known trapezoildal rule.

For thls example, the total potential energy may now be

written
eEll0o, ,.2 2 "2
IN, . wn2

If a parabollic curve 1s passed through the deflection curve,
then the second derivative of the deflection at station O

may be written in difference form as

- M.y = énpgt+t My

Bel s T

but, since mn_y =mp and L =0

For any station m the second derivative is

w ~ Tmel T CMy * Mipyy
N 2
€
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The above expresslons for the second derivatives are now
substituted into the expression for the total potential

energy given by equation (1). This results in

I
v = —%[—éq(znl)z #Ip(-2my + mp)2 4 . o+ Ty(mpey - 20+
2e

f = -
a1l + o o o+ olnyay = 20y + )™ ) - (Bpmp + 0 0 o4

Pmnm SO0 s 0 Ry PNT]N)

It should be noticed that replacing the second derivatives
by differences introduces the deflection of the beam at one
statlon past the tip into the energy expression.

The deflection shape which satisfies equilibrium is
obtained by differentiating m with respect to each deflec-
tion and then setting the resulting equations equal to zero.

Thus, for my

o _ & |8Ig
My 22| 2

for Y
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=
o E
Mm Ezglflm-l(nm-z - 2Mgy + M) - bIglng g = 2Ny + Mgy ) +

2Lty = Chpsy + Mo hils By = 0

and, for Ty,

om
M+l 2¢9

In(ny-y - 2y + MNyp)| =0

The N+1 equations which result from the above mlinimlzation

process can be written in the following matrix form

7 ] "']1 Pl
N2 2
A "m = Pm (2)
N Py
TIN+1 0

where



32

in which (where the number of rows and columns are indicated

on the right)

The

]

(N+ 1) x (N + 1)

transpose of [?1

¢

(N + 1) x (N + 1)

A matrix in equation (2) is called the stiffness

matrix since its coefficlents glve the load at one polnt

‘necessary to cause a unit deflection at another point.

However, what 1s wanted is the deflections 1n terms of the

lqads or the influence coefficient matrix,

be found by inverting the stiffness matrix.

This matrix can

Multiplylng
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equation (2) by the inverse of the A matrix gives

120 - T-l Pl

N2 Py

nm = A Pm_ (3)
N Py

NN+1 - _ 0

where A~l 1is the influence coefficient matrix. The matrix
equation (3) is a simultaneous set of equations which give
the deflections in terms of the loads. Inasmuch as we are
not inﬁerested in the deflection at the statlon past the tip,
the last equation or the last row of equation (3) can be
deleted. Also, the last column of the A=l matrix can be
omitted since this column is multiplied by the load at sta=-
tion N+1 which 1s zero. During a symmetric free-free
vibration of the beam, the deflection of the center 1line,
wg, will not be zero. Thus, a place must be provlded in the
matrix equation for this deflection and 1ts corresponding
load Pye. Although at this time the deflection wy cannot
be determined, it can be added to the matrix equation and

its value determined later by considering the dynamic
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equilibrium condition of the beam during a symmetric vibra-
tion. The deflection wy 1s added to matrix equation (3)
by first adding a row and column of zeros so the first row
and column of the A"l matrix is zero, and then addlng &
column of wgp's to the right side of equation (3). After
these operations and the operations to omit the deflection

at station N+1 have been carried out, equation (3) may be

written
WO = Po i1
y = A : + w $
W Py | 0 1
- L :
. } ‘
‘ L ]
N % PN 1
or
w = A P + W T (L)

where A 1s derived from a-1 by deleting the last row and
colunn and adding a row and column of zeros.
Up to this point, the deflections of the beam have

been found in terms ef concentrated statlic loads acting on
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it. When the beam is in a natural vibration there wlll be no
static loads, but there will be dynamic loads. These dynamic
loads can be found by employing d'Alembert's principle which
states that every state of motion may be considered at any
instant as a state of equilibrium if appropriate inertié
forces are introduced. The dynamic loads at any point y
may now be written

p(y) = Pm(y)wiy)

¢

The sbove equation gives the dynamic loads at any point of
the beam. However, what is required for this analysis is
the dynamic loads associated with each station. These loads
can be found by concentrating the distributed mass of the

beam at the statlons.

|
¢

B3 mp  my my mz o Ty-1 oy
=1 , L 2 Z m N-1 N
0

The dynamic load at any station m will be

= L2 1
P = v m.w (T—~—->
m mWm
l+6Om
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and if matrix notation is used, the dynamic loads at all the

stations will be

Py g wg
: Le s ;
P My Wi
P m .
N 3 N N

or

E

If the dynamic loads gilven by equation (5) are substituted

(5)

into equation (L), then the deflection of the beam in terms

of the dynamic loads 1s found to be

o[ 2] ]

The unknown deflection, wgy, can be solved for by using the

w

+ W, ' g , (6)

dynamic equilibrium condition that during free-free vibration
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the sum of all the loads on the beam must be zero, or

o

which may also be written

Rl

To apply this dynamic equilibrium condition, equation (6) is

wi|{=0

multiplied by the row matrix LIJ EM] and then set equal to
zero. This yields |

a0 BINSESI

Now solving for w,p from the above equation and substituting

w I[=0

it into equation (6) gives

IR [EEE R

w !
or

el A ) P S



where

- [ 1] e

The deflections and frequency for the first symmetric
free-free mode of the beam can now be found by applying a
matrix iteration to equation (7). In the matrix iteration,
a normalized trial mode shape is substituted into the right
hand side of eguation (7), and the resultiﬁg mode shape on
the left hand side found. This mode shape is then substi-
tuted into the right hand side and the left hand mode shape
again found. This procedure 1s continued until the mode
shape obtained on the left hand side is the same as the mode
shape on the right hand side. The solutlon for the higher
modes and frequencies can be found by using the well-known

orthogonality condition that

]

to sweep the lower mode components from the higher mode
shapes. A method which does not need the orthogonality
condition (and is therefore more generally applicable) is
given by Wielandt in reference 9. Instead of an orthogo-

nality relation, Wielandt used a linear comblnation of the
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lower mode shapes in the sweeping process. A disadvantage of
Wielandt's method 1s that although the frequencies are found
directly, the mode shapes obtained are transformed modes or
linear combinations of the lower mode shapes. If the actual
mode shapes are wanted, then they can be obtained from the

transformed modes.



CHAPTER V

CALCULATION OF THE THEORETICAL FREE-FREE

MODES AND FREQUENCIES
Stein-Sanders Equations

In reference 7, Stein and Sanders have presented a
method by which the influence coefflicient matrix of a
built-up delta wing can be determined. This matrix is
obtained by inverting the stiffness matrix, which is given
directly by the Stein-Sanders method. The stiffness matrix
is found for a wing supported in two different conditlons;
these two support conditions are: (1) the wing rigidly
clamped at the trailing edge of the center line with
symmetrical loading, and_(Z) the wing simply supported at
two points on the trailing edge with antisymmetrical loading
(giving zero deflection along the center line). The stiff-
ness matrix which is obtained for the wing in any one of
these supported conditions is called the "fixed" stiffness
matrix. Again, as was shown in the chapter "Discussion of
Influence Coefficient Approach", the "fixed" stiffness
matrix can be used to find the free-free natural modes and
frequencies. The "fixed" stiffness matrix derived for the
first condition is suitable for the symmetric free-free
modes and the "fixed" stiffness matrix for the second

condition is suitable for the antisymmetric free-free modes.

o)
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The deflections of the fixed wing are represented by

the following power serles of three terms
n(x,3) = %(y) + x0;(y) + x%0,(y) (8)

The coordinate system used to write equation (8) 1s shown

in Figure L. The physical meaning of the coefficients, or
the genersallized deflections, in the above power serlies 1is:
¢O(y) represents the transverse dlsplacement of the tralling
edge, 91(y) represents the twist of the wing, and o(y)
represents the parabollic curvature in the chordwise direction.
As 1In the example problem, the wlng deflectlons are deter-
mined at a number of equally spaced stations along the span.
For this wing, it 1s felt that station points located at
every other rib are sufficient. This ylelds a value of the
interval ¢ equal to 16 inches, The location and number of
these station polnts 1s shown in Figure 5. Therefore, for
the delta wing, the deflection shape at any spanwise station

m 1is represented by a power series of the form
X, ¥y) = dop + Xy + x2¢2m (9)

In the deflection analyslis of a beam, the lateral

loads enter into the equations slmply as loads. However, in
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the Stein-Sanders method, the lateral loads which are
distributed over the delta wing enter into the equations as
loads, torques, and second moments. Thls is because the
deflection shape 1s represented by a power series of three
terms. If p(x,y) 1is the distributed lateral load at any
point x,y then the loads, torques, and second moments

about the =x = 0 axls may be wrltten

c(y) B
‘ pn(y) =/; p(x,y)x" Lax (10)

where pn(y) is called the generalized load; pl(y) repre=-
sents the load, py(y) the torque, and p5(y) the second
moment at station y. The generalized load defined by
equation (10) is continuous over the span; however, the
generallized loads used in the stiffness matrlx are concen-
trated at the station points. For this reason, 1t 1s
necessary to concentrate p,(y) at the station polnts. If
the distance between station points is e and if p,(y,)

is the value of p,(y) at station m, then the concentrated

generalized loads at station m are

Pom = €Pn(¥m)
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The procedure used by Steiln and Sanders to find the
stiffness matrix was to first write the expression for the
total potential energy of the bullt-up wing. The deflection
shape given by equation (9) was then introduced into the
total potential energy expression, and the derivatives of
the ®'s written in difference form. The integration in the
spanwise direction was then replaced by a summation in
accordance with the trapezolidal rule. The minimization of
the resulting total potential energy expression was then
carried out. This resulted in a set of simultaneous alge-
braic equations in which the generalized deflectlons, @ .,

at the station points were related to generalized loads.

Symmetric "fixed" influence coefficlent equation.-

The "fixed stiffness matrix to be used to determine the
symmetric modes and frequencies is found for a wing which is
rigidly clamped at the tralling edge of the center line. A
sketch of the wing clamped in this manner is shown in the

following sketch.
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B\

.1 0 1 2 3 L4 5 6 17 8

Now that the station points have been selected, the
unknown generalized deflections in the matrix equation for
the first condition are @33, « « ¢, 908 ®11s ¢+ c s 01
and @20, « o o ¢27; the known generalized loads are
Pi1s o o o Pl7’ Pris o o o P27, and Pzy, ¢ « o, P37.
It should be noticed that although @O, ¢1, and ¢, at the
station past the tip, station 8, appear in the original
Stein-Sanders matrix equation, i1t 1s only necessary to use
¢y end @l at one station past the tip for this wing.
This follows from the fact that the wing comes to a polnt at
the tip; only these two quantities at station 8 are necessary

to express completely the potentlial energy at the tip station.



With the above facts in mind, the Stein-Sanders matrix

equation for the first condition may be written

T ' ! |
| | (%1 | | P
l %02 Bz
A1l | A12 | Ay3 - .
Lol Eay
[ %08 0
®11 Poy
P Poo
Apy | Bp2 | A23 : = :
d’]._ P.
e 27
- %18 0
i d20 P3o
i
A P31
A RS A
cil B ke 5
A :
g i ey P37

or

L7
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where, 1in the notation of the present paper

] =[] 2]+ [ [2]

:w%ﬁﬁ#mmﬁﬂmﬂ

EARENIE [T (] - el [£] s [a‘g)ﬂ
Fiea] =[] o] ) e Toe %

ot - os] [+ []
[s5] =[] [ (2] + (e [ea] (2] +

b e u)ea[D3][a§5)] [qJ o Zpe‘?'l:Dl:l [aéa)]
[153] =[] [ ][]+ ][] (2] -

o - e ][ 4] [a]' + 2] 47

Zpez[[sz[ (2)4] - Lok a{h)} v efry]

[421] =[m12] s [m52] =Paz] s [sa] = [25]’

The submatrices used in the above equations are defined in

/4

the following equations; the elements of the submatrlces are

defined after the definitlion of the submatrices.
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2 ~ 2
.

s o2 a2

~ 2 N~ 2 (ed 2
Xg -2x6 x4
~ 2
L *8

The aii elements in the aﬁl) submatrix are made

up of the stiffness propertlies of the straight spars (spars
perpendicular to center line), cover sheet, and stringers.

The equation for azi is

qu‘i 2 k Ai
] E ~ eails 2tz4€ ci A 2 3
k e T 1- 42 K : g=1 1
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where

= distance between spanwise statlons (16 inch).

€
Ny = number of straight spars at station 1.

b4

Iqi = moment of inertia of the qth spar at station 1,
obtained from Table I. (Note: the moment of Inertia
of spars No. 1, 3, and 5 at stations 7, L, and 1,
respectively, should be half the value gilven in
Table I. This is because these spars end at a
station; thus, the interval over which the moment of

inertia is summed should be % € and not e€.)

%

t = cover sheet thickness (0.0696 inch).

x coordinate of the gqth spar.

gy = cover sheet height, obtained from Table IILI.

cqy = chordwise length of cover sheet at station 1.

ii = moment of inertia of one stringer at station i,
obtained from Table IV.

ﬁi = number of stringers (on both covers) at station 1,
obtained from Table IV,

iq = x coordinate of the gqth stringer, obtained from

Figure 2.
The aj4's are tabulated in Table VIII for k =1, 2, . . .,

5 and: i1 = O, l, 2’0 o ey 70



TABLE VIII

ELEMENTS OF THE MATRICES DEFINED BY EQUATIONS (11) AND (13)

* -2 -l
e ¥t %51 &)y X 10 &5y X 10 By
Senleg B/ E/e B/e B/’ E/e E/€’
in.LL in.5 in.6 im.7 in.8 in.LL
0 ST 8586.72 540,648 385,404 292,390 0
i el 1Nl 8586.72 540,648 385,404 292,390 0.813382
2 124.238 4764 .39 250,464 148,058 95,508.9 607404
3 (5525 2417.80 103,551 49, 642.3 25,334 .2 437386
4 42,3884 987.584 SO OB 11,802.5 4,623.10 .300299
5 19.3926 289.985 6,174 .39 1,469.67 372.193 .193115
6 5.98082 46.6473 506 .866 61.2106 TBBL .112809
7 .269720 | 0 0 0 0 .056350
&4 84 831 By
e B/’ E/e? E/e> ug/e’
in.u' in.5 in.6 in.5
0 110.833 5319.95 340,477 101.802
1/2 110.833 5319.95 340,477 101.802
1 11:0-853 5319.95 340,477 29k .659
3/2 90.2631 3971.57 232,999 797650
2 T72.3635 289k .54 154,375 61.41hh
5/2 56.9509 2050.23 98,411.1 46.3320
3 43.8425 1402.96 59,859.7 Ukl
T2 32.8557 919.960 34,345.2 24.3958
by 23.8077 5. 58l 18,284.3 16.8202
9/2 16.5156 330.313 8,808.34 11.066k4
5 10.7969 172.750 3,685.34 6.83520
11/2 6.46871 77.6245 1,241.99 3.85008
6 3.34832 26.7866 285. 724 1.86243
13/2 1.25300 5.01200 26.7307 646000
Ti 0 0 0 0

55



where
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The contribution of the cover sheet 1s given by a4

A Ve i 2t24° cyX¥

The ay4's are tabulated in Table VIII for k = 1, 2, and 3

and 1

= (002 T8 5 ey LB 2 T

The Bi's account for the stiffness properties of

the leading edge spar and are defined as

where

Bi L féi cos5Y
%)

Iy = moment of inertia of the 6th spar at station i,

obtained from Table I.

Y = angle that spar No. 6 makes with the center line (L5°).

The 51'8 are tabulated in Table VIII for

1=1’2’°°':7°

The rib stiffness is accounted for by the Bj; element

which is gilven by
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where
ii = moment of inertla of the rib located at station 1,
obtained from Table II.
The By's are tabulated in Teble VIII for 1 = O,
3/2, Ly o 5 =y 23/25 T

The ii's used in the Xg and Xs2 submatrices are
the x coordinate of spar No. 6.

It should be noticed that 1f the Stein-Sanders matrix
equation were applied to a cantilever beam, then the
resulting matrix equation would be identical to matrix
equation (2) obtained in the chapter "Discussion of Influence
Coefficient Approach." If the wing were only a beam, then

equation (11l) would reduce to

[A11] |9 | = | 21|

where, now

gl = (o] [5 1] o)

but, the D7 matrix in equation (11) is the same as the D
matrix used in equation (2), and ¢; 1s simply the deflec-
tion of the beam at the station points which i1s also the

same as T"Ne
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The "fixed" influence coefficient matrix needed to
find the symmetric modes and frequencies 1is found by
inverting the Ag matrix In equation (11). The inversion
of this 2 x 2l matrix was done by an IBM 604 automatic
computing machine at Langley Fleld. The machine time
required for the inversion was 9-1/2 hours. After

equation (11) is multiplied through by the inverse of the

Ag matrlx, then this equation becomes

__ -
®01 P11
%2 ‘ Pio
Yo7 P17
_foB 0
®33 Poq
o | P
1.2 ! 22
%7 | P27
(0] |
L 28 | <
| 1 B
%20 | P30
o E
o]
27 N R
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Equation (12) is called the symmetric "fixed"™ influence
coefficient equation and gives the generalized deflectlion
in terms of the generaliged static loads of a wing which 1is
rigidly clamped at the trailing edge of the center line.

Antisymmetric "fixed" influence coefficlent equation.-

To determine the "fixed" stiffness matrix of the wing in an
antisymmetric free-free mode, the Steln-Sanders matrix
equation for the second condition is used. The wing,
supported in the manner of the second condition, 1s shown

below, ‘

¢

The unknown generalized deflections in the matrix equation

for the second condition are %32, . « o, 085 H1s o o e

%8, and @5, . . o, 027; the known generalized loads are



Pla, e o oy Pl?, PZl, e o oy, PZ?’ and PBl, e o o4 P370

60

Again, the equation for ¢28 has been dropped because it 1s

not necessary for this wing. Now the Stein-Sanders matrix

equation for the second condition becomes

32

or

[Aa]]a:]:]Pl

(13)



where, in the notation of the present paper

o] = B3] |67 + B |’

) = 2|07 £+ ] B

) = ] | 497 Bl + B ]+ =

[(222) = ] [+7)] ' + [l B [ -
2 - wefo o] B

[heg] = o] [w] [26] '+ [xe] o] [2]
o -y B B3 i) ]

o = B [ B [x) e ] -

EINC ﬂj

o2 = e b5] [of2)] og] + 2ne® 5 Eéeﬂ ;

— |

2ue” [D(J [336)
L_ st 2

- heu[é§7);]+ € 5{}‘&}
[hoa] = [z s (o] = [az] 5 Pisg] = [feg]’
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The "fixed" influence coefficlent matrix needed to
find the antisymmetric modes and frequencies 1s found by
inverting the Ay matrix in equation (13). The A, matrix
was also inverted on the IBM 60, machine, However, the
machine time required was only 8 hours since A4, 1is a

22 X 22 matrix. After equation (13) is multiplied through
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by the inverse of the A, matrix, then this equation may

be written

|
02 B P1p
%3 Pz
®o7 P17
®1; Poi
. %12 Pap
° ' = Aa ° (JJ“')
®17 o
e :
®o1 Pz1
P
802 32
97 B ) Pa7

Equation (1ly) is called the antisymmetric "fixed" influence
coefficient equation and gives the generalized deflectlons
in terms of the generalized static loads of a wing which is
simply supported at the station points 1 and -1 on the

tralling edge and has zero deflectlon along the center line.
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Discussion of "fixed" influence coefficient matrices.-

The Ag~l mnd Ag~l matrices defined in equations (12)

and (1l}), respectively, do not give the actual influence
coefficients, that 1s, these coefficlents do not relate the
actual deflections to the actual statlc loads. What they do
relate 1s the generalized deflections to the generalized
loads. It 1s possible to modify As‘l and Ag-l so that
the actual deflections could be found in terms of the actual
static loads. However, 1t is more convenient to work with the
equations as they stand even though the dynamic loads actling
on the wing will have to be modifled so they are conslstent
with the generalized loads used in equations (12) and (1l).

Free-Free Influence Coefficlent Equations

The influence coefficlients for the fixed wing were
found in equations (12) and (1ll}). In order to determine the
free-free natural modes and frequencles of the wing, it is
necessary to modify these "fixed" influence coefficients.
This modification consists of making room in the influence
coefflclent matrix for the generalized deflections of the
points which were considered fixed in deriving the "fixed"
stiffness matrix.

The deflection of the wing in the fixed condition

was denoted by m(x,yy); the deflection of the wing in the
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free-free condition will be denoted by w(x,y,) where
w(x,y,) 1s the deflection of the wing relative to the plane

of rest and is represented by the following power series

w(x,ym) = Vg + W+ XN, (15)

In eguation (15), is the deflection of any station m

wOm
on the trailing edge relative to the plane of rest, Wlm
represents the twist of the wing, and Vam represents the

paraboiic curvature in the chordwise direction. The relation

between &5, and Vq,, for the symmetric case, is shown in

the sketch below.

Wing trailing edge —

;
’
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Symmetric free-free influence coefficient equation.-

The influence coefficlent matrix, As'l, in equation (12) is

for a wing which is rigidly clamped at the tralling edge of
the center line. During a free-free symmetric vibratlon, the
deflection and slope of the trailing edge of the center line

will not be zero; thus, V¥gg, V39 and Pyg, Ppg must be
added to equation (12). Although at this time, ygg and V¥

cannot be added to equation (12), at least a place can be
provided in the matrix equation so they can be added later.
It should be noticed that the &'s at one station past the

tip, ¢pg and &g, which were necessary in the original

derivation of equation (11l) are no longer necessary and the
equations containing them can be deleted. This 1s the same
procedure as that used in the chapter "Discussion of
Influence Coefficient Approach." With these facts in mind,
the following operations are now performed on the As'l
matrix:

1. The 8th and 16th row and column is deleted. This
operation eliminates the equations for &g and ®;g.

2., Two rows and columns of zeros are added so the
lst and 9th row and column is zero. This is done to allow

room for the WOO and *10 coefficients.
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After these operations have been performed on the

Ag™l matrix, equation (12) becomes

0 | Big
o1 % P11
206 P16
Yo7 | 2R
f o | P20
o0 Po1
. = Ag AN | (16)
®16 - Fag
i Fa7
¥20 __—526‘~'
oo P
| . :
| . :
%6 Pz
| B2y L 1 e

where Ag is a 2 X 2, matrix and is the matrix that results

after the previous operations on the As"l matrlx have been

carried out. If the two unknown coefficlents WOO and le



T
are added to the above equation, then equation (16) can be

expressed as follows:

¥ = [8s] [P| *+ ¥oo|T1| *+ ¥10| 22| (17)

where

Vo1 P11 Ig 2l x 1 0

! __._.__‘ ———] i
[¥| = [vag|s |P] = |P2ys |11| Sl s |T2| = |18 2k *1

;;; ;;:- 0 0

Ig = column of 8 ones

= 015,250 0 s O

Equation (17 is called the symmetric free-free influence
coefficient equation. To determine the modes and frequencies,
it 1s now necessary to find the dynamic loads and the values
of VOO and *10'

Antisymmetric free-free influence coefficlent

equation.~ The free-free influence coefficlent matrix
equation is obtained by appropriately modifying the "fixed"
influence coefficient equation. (See eq. (1ll).) During a
free-free antisymmetric vibration the deflection of the

center line 1s zero, but there will be a deflection at the
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station points 1 and -1 along the tralling edge. Thus,
for the antisymmetric case, the coefficlent W¥,; and the
corresponding loading term Pj; must be added to the matrix
equation for the influence coefficlents. As in the symmetric

case, equatlons for °08 and @&yg are contained in

equation (1) and now are no longer necessary.

The following operations are now performed on the

Aa-l matrixs
1. The 7th and 15th row and column is deleted. This

operation eliminates the equations for 939 and %180

2. A row and column of zeros is added so the lst row

and column is zero. This is done to allow room for the *Ol

coefficient.
After these operations have been performed on the

Aa'l matrix, equation (1) will take on the following form:
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0 {" P13 |
®02 Pyo i
- E o
® 2 () i
e L
®11 i Ppy
UP) Pso
L= by : (18)
T Fon
ol P21
222 Pzo
Y21 X 4 | P8

where A, 1s a 21 X 21 matrix and is the matrix that results
after the previous operations on the Aa'l matrix have been
carried out. To obtain the free-free antisymmetric modes 1t
1s necessary to add a rigid body rotation about the x-axls

to the above equation. After this is done, then
equation (18) will become

[v|=[8a] [2] + ¥oyr| (19)
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where

Yo Py | 3
s i 2
Wl=|v1s|s Bl = B35 |rl=). |20 x1
== b r oo &
0
! 0

12,0« = o5 T

€
]

Equation (19) 1s called the antisymmetric free-free influence

coefficient equation.,
The Dynamic Loads

To determine the natural modes and frequencies of the
delta wing specimen it 1s necessary to replace the static
loads with dynamic loads. The dynamic loads at any point

X,y on the wing may be written
p(x,y) = wlm(x,y)w(x,y) (20)

In equation (20), w(x,y) 1is the deflection of any point on
the wing relative to the plane of rest and is represented by

the following power series

wix,y) = vg(y) + x¥(y) + x?vz(y) (21)
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If the expression for the deflection (eq. (21)) is substi=-
tuted into equation (20), and the resulting equation for the
dynamic loads substituted into equation (10), the following
equation for the generalized dynamic loads at any station ¥

is obtained:
c(y) .
Puly) = wS fO m(x,y)E!n l‘#o(y) + xnvl(y) + xn+1\¥2(yﬂdx

Since the +V¥'s are independent of x, this equation may be

written in the form
S~
Phly) = w [Tn(y)'o(y) + mpy(yivy(y) + mn+2(y)*2(yz] (22)

where

c(y) =
m(y) = jg m(x,y)x tax (23)

Equatlon (22) gives the generalized dynamic loads at any

spanwise station y. What i1s wented 1s the generalized load
at discrete spenwise station points. The procedure used to
concentrate the distributed loads to the station points will

be shown by considering only the loading due to the term

Py (y) = w’my (y)¥g(y)
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After the loading due to this term is found, it 1s easy to
extend the resultsto the other terms in the equation for

Pn by ).
Let us consider first the distributed loads, pi(y),

such as caused by the spars, cover sheet and stringers and

then consider the concentrated loads, p;(y), that result

from the ribs being placed between the stations. To concen-
trate the distributed loads to a station point m, the mass
per inch of the structure at station point m 1is multlplied
by the distance between stations. This procedure 1ls shown

in the sketch below, where mim is the mass per inch at the

mth station.

0
©
=
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The generalized load Pf at statlon m will now be
= 2 L
me = em Von

If there are 7 stations, then all the Pi's can be written

in matrix form as

75 N | Yoo
Py Vo1
< = w2 Mi" °
.* °
= - D Yot
where
e =
> =10
m¥y
[M;"L:] = . 8 x 8
e §
ml7
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in which

Ni A
myy = € %;% mqi + 2mey + mNy

ﬁi = number of spars at station 1 (includes spar No. 6).

=2

= mass per inch of the qth spar at station 1, obtained
ql
from Table I.

mass per square inch of the cover sheet (0.00696 lb/in.z).

m

a
m

mass per inch of one stringer (0.01920 1b/in.).

When the mii's were calculated, only one half of the mass
of spar No. 1 at station 7, spar No. % at station I and
spar No. 5 at station 1 was used. Thls was because these
spars end at a station; thus, the interval over which the

mass was summed should be % € and not €.

The calculation of pi(y) for the ribs 1s complicated

by the fact that not all the ribs lie on the stations. An
approximation could be made by concentrating the ribs so
their weight is on the station points. It is felt that this
procedure does not adequately represent the actual mass
distribution and consequently does not adequately represent
the dynamic loads. Therefore, a method 1s presented which
accounts for the ribs being placed between the statlons.

Again, the procedure for obtalning 51 due to V¥g at
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station m 1is shown, and then the results extended to the
other ¥'s and the other stations. If ém i1s the mass of
the rib at station m, then the location of the rlb mass

along the wing will look like

Ty _1 mm-21. oy ﬁ‘m+% Myl
@ & —8 o
m-1 m-—% m m*—% m+1

The contribution of the mass at station m to ﬁl will be
2
© "Iy ¥om

If 1t 1s assumed that the deflection at the half statlons
can be obtained by a linear Interpolation, then the contribu-

tion of the mass at the half station m - & to P; will be
2

. Vo,m-1 ¥ Yom
2
”amm-%( 2
In the matrix equation, only the P's at the whole stations
are used; thus, it 1s necessary to distribute the above
contributlon of the mass at the half station to a whole
station. This 1s done by assuming that one half goes to the

whole station on the left and the other half goes to the
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whole station on the right. The equation for P; at

station m will now be

v + ¥ v L/
o _ 211 O,m=1 Om o 1 Om O, m+1
Elm =& 'é'mm-él-< —= > +mmV0m+2mm+%< 2

The equation for the i’l's due to the ribs at all the

stations may now be written 1n matrix form as

P10 V00
Py1 : Vo1
® = w2 I;II °
P16 Vo6

where I:dl 1s defined on the next page. The mass of the rib at

station 1, rﬁi, 1s obtained from Table I1I,
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Now by combining the results just obtalned, the equation for

the P3's for the spars, cover sheet, stringers, and ribs

may be written

P11 = “’zﬂfmﬂ * D‘ljj | ¥o1 |

If a careful inspection 1s made of the expression for
Ph(y) given by equation (22), it is seen that the equation
for the loads, torques and second moments at all the stations

due to the spars, cover sheet and stringers will be

% ! s | e | ]
253 = MMy Ma) ¥y
o o L o2 IR A
=818 5] | n EL
3 N,
P g M¥ 1] v
51 | ! lMﬁ_ 21
where
Ea 7
= m
2 kO *
M1
[Mk] = : 8 x 8
micg J
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in which

g1 o ciX M

miy =€ z:: my1%q +2m—— +m L. Zq

The mﬁi'a are tabulated in Table IX for k =1, 2, « s ¢, 5

and I =0, %, 25 « o 's; [

In the discussion just presented to show the method of
concentrating the dynamlc loads which result from masses
located between the station polnts, only the ribs were
considered. But, 1t should be remembered that there are
other concentrated masses located between the station points,.
These masses are the reinforcements, spar to rib rivets,
shaker attachments, and pickups. These concentrated masses
present no problem since they can be accounted for 1n the
same manner as the ribs, If P ni represents the loads
caused by the ribs and concentrated masses, then all the

Phy's may be written

(] L] ‘.. 00~'

LA YR LU

ee o 2 :. .‘0 ee

_Pii_ =W :-112 iz ) My Vg (25)
ee o0 |00 0 ]

P31 M3| M, :MEJ vo1



TABLE IX

ELEMENTS OF THE MATRIX DEFINED BY EQUATION (24)

Station
e

NN O\ FWN O

*
e

1b

41.1278
41,324k
35.7525
29.3469
22.3516
15.4279
7.40026
1.82504

>k
L4

1b-in.

1875.68
1894 .56
1400.83
952,372
536.832
240.865

599959
0

b 3

- 1b-in.2

119,166
120,978
76,324 .8
41,296.1
18,44k .2
5,521.20
720.445

1b-in.” Byt |
85,582.5 65,909.1
87,322.7 67,5797
46,728.3 30,561.3
20,420.0 10574123
7,095.53 2,910.25
1,395.06 372.152
95.4556 13.3428
0 0

8
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where Mp 1s defined on the next page. The ﬁ&i elements

in the Mk matrix are

k=1
oo Ci

- E (e) k-
m . = M + m'~(x,,ys )X
ki i k XP=O’ 2)_‘., ° ° 0,96 p yi p

i

where

m(°)(xp,yi) concentrated mass at the point xp, yj,

obtained from Tables V and VII

(m(r)(xp,yi) - m(t)(xp,yi)).

The my4's are tabulated inaTable X for k.= 1, 2, ¢ = o5 9
anal S =N07SET 2 St c oo R B T

The equation for the dynamic loads due to the spars,
cover sheet, stringers, ribs, reinforcements, spar to cover
rivets, shaker attachments, and pickups 1is obtained by

adding equations (2L ) and (25) so that

P1y L | ¥or
P2i = w2 M *li (26)
ta B (Y1
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TABLE X

ELEMENTS OF THE MATRIX DEFINED BY EQUATION (25)

SEatlion my 4 Moy mBi m 5 X 10-2 m5i X 10 4
& 1b 1b-in. 1b-in.2 1b-in.J To-1n.*
0 3.94690 211.262 14,982.9 11,847.3 9,917.19
1/2 3.46790 165.278 10,568.5 7,609.43% 5,848.82
i 1%.6952 667 .50k LY, 861.0 33,857.2 27,255.5
3/2 2.99762 130.691 T,643.56 5,051.62 )
2 2.53836 100.768 5,364.99 5,21%.82 2,054 .36
5/2 6.25518 240.373 12,367.5 6,925.12 4,121.78
) 1.83293 58.2476 2,481.98 15189501 607 .537
7/2 1.48624 41.4483 1,550.07 651.508 291.967
L 5. HLLRT 79.3129 2,943.22 1,205.43 523.628
9/2 .920960 18.2725 486.67h 145.685 46.5177
5 684168 10.886k4 252,725 55 .8540 14.2820
11/2 3.17625 22.5150 495,184 1135.423 26.4410
6 284872 2.25625 24 . 0667 2.88801 .369665
13/2 .116360 154080 2.42176 .145306 .0092995
i .70 0 0 0 0
B

Lg
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where

[] = | Mz %5 |20,

o] = [ef] + [ |

Free-Free Modes and Frequenciles

All that remains now to determine the natural modes
and frequencies 1s to substitute the generallized dynamic
loads into the free-free influence coefficient equations and
determine the value of the unknown generalized deflections.
This will yield a matrix equation from which the modes and
frequencies can be found by applying a matrix iteration,

Symmetric free-free modes and frequencies.- To obtain

the matrix equation which yields the symmetric free-free
modes and frequencles, the dynamic loads given by equation (26)
are first substituted into the symmetric free-free 1lnfluence

coefficient equation (eq. (17)) this ylelds

¥ = w2[ag] [M] [¥]+voo [T2]+ v10 [22| (D)

The Voo and ¥jg0 can be solved for by considering the

dynamic equilibrium condltions which the symmetric free-free
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wing must satisfy. One dynamic equilibrium condition 1s that

the sum of all the dynamic Ioads must be zero

Pis =0 (28)

The other dynamic equilibrium condition 1s that the sum of
the moments of all the dynamic loads about the y-axlis must

be zero

g ZY: Poy =0 (29)

1=0

Equations (28) and (29) may be written in matrix form as

|Ia] l2i=o0

or (28a)

LIlJ [u] M=o

and

|_12J.| Pl=o0

or (29a)

=[] wies
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When the dynamic equilibrium condition given by equation (28a)
is applied to equation (27), the following relation 1is

obtained
o?| 1y [[u][as] (]| ¥] + voo [T (][ Ta| + wyo |Ta] ]| 22| = O

and when the dynamic equilibrium condition given by

equation (29a) 1s applied to equation (27)

o? | L | (2 ][] 1| + oo [T ]ld|Ta] + vig | T2 (]| 22]= O

The above two equations may be written in the followlng

matrix form
S e
i )

myy = LIl_J (] |11 | mpp = | | (] |12 |
mpp = |1 | ] |2 |

Yoo

|-l ) [ eI 0

where

(30)

Now solving for vOO and wlO yields

Voo = W |—0.22L11_] - alZLIZ-U (] [ag ][ ]Il
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and

Y0 = “’2If11[_12_J . “12[_11_U L] [“s:I I:M] v

where

___m &0 - -
b My 3 %3 .% 75 3 a2 = 3 (31)
S D i 0. Haoseitee L i

s

Now that the values of Yoo and V4 Wwhich satisfy the

dynamic equilibrium conditions have been obtalned, 1t 1is

necessary to substitute them into equation (27). This gives

[¥| = o [Is:! - ':azzl I | LI]__] - app| 11| Bk a11] 12 | LIE_}-
SRESIEN] Il e BT

or

v]= w? [0e] EAS:H:M] v | (32)

where Iy 1s a 2 x 2, unit matrix. Although equation (32)

is correct as it stands, it may be written in a simplier

form. If the C8 matrix is wrltten



then the

D

o] = (5] =]

matrix may be written, after simplification

92
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[me = | 28 4]

By using the above notation, the mjj, mjp and mpo

parameters defined by equation (30) may be written

my) = Lmlj |18 3 mp = I_ma_l IIS

The symmetric free-free modes and frequencies are now

ome2 = !_ma_l |7 |

found by applying a matrix iteration to equation (3%32). For
this process, an IBM CPC automatlc computing machine was
used. The first four modes and frequencles were found. The
machine performed each iteration in 5 minutes. For the
first mode, 15 iterations were used, for the second,

25 1terations, for the third, 35 iterations, and for the
fourth mode, 50 iterations were used. Since Wielandt's
sweeping method was used for the second, third and fourth
modes, the mode shapes obtained in the matrix iteration were
transformed modes. To obtain the true modes, an IBM 60L
machine was used.

Antisymmetric free-free modes and frequencies.- The

antisymmetric free-free modes and frequencles are found by

substituting the dynamic loads into equation (19), determining
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the unknown coefficilent ¥o1> PY considering the dynamic
equilibrium condition, and then applying a matrix iteration
to the resulting equation. The expression for the antl-
symmetric dynamic loads is obtained from equation (26) by
striking out the lst, 9th and 17th row and column of the

M matrix. This yields the following matrix equation for

the antisymmetric dynamic loads

P3J 5 o v2j

where
j=1:2:""7
The substitution of equation (33) into equation (19) yields

[#] =« [2a] [T ¥] * vor | 7] (54

The dynamic equilibrium condition for the anti-
symmetric case 1s that the sum of the moments of the dynamic

loads about the x-axis must be zero

fi
Y3F15 =0
;;IJIJ
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This equatlion can be written in matrix form as

e Jfe]=0

or, by using equation (33)

Lr_l [:Ma] M =0 (35)

If the equation for ¥ (eq. (3L)) is introduced into
equation (35), then the dynamic equilibrium condition for

the antisymmetric case becomes

Sty CYES RS

Solving for Vo1 from the above equation and substltuting

it into equation (3L) yields

L 2 |r|L?J[NéJ =
‘W’— w [Ia] - LI‘_[M&:“rl [Aa_iEMa]

‘|

or

‘vl = ,.@[ca] [Aa] [, ] |¥] (36)
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where Ia is a 21 X 21 unit matrix. After a few manipula-

tions, the Cg matrix may be written

LR:[ [Mﬂ [R] [M;j [Rj [Mﬂ

Ly B S
where
|7l =[123L567

]

[’ =[] 5]

Now by using the above value of Cg 1in equation (%36), the
antisymmetric free-free modes and frequencies of the wing

can be determined by using a matrix iteration. As in the
symmetrical case, automatic computing machines were used to
carry out the matrix lteration. Approximately the same number
of iterations were required for the antisymmetric case as

were required for the symmetric case.

Discussion of parameters.- At thils point, the physical

significance of the mjj;, mj2 and mpo pérameters defined
by equation (30) should be brought out. The mj; parameter
i1s simply the mass of one half of the wing, the myp
parameter is the moment of the mass about the y-axls, and the
moo parameter 1is the second moment of the mass about the

y-axis. The center of gravity of the wing is simply myp/mjj.
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The weight and center of gravity of the wing were determined
by measurements. A comparison of the measured and calculated

m's 1s shown below,

Measured Calculated
BHygy AD o v 4 5w sow w5 oa sl s bF52 Lz3z.2L2
2myo, 1b=ine ¢+ ¢ o 0 e e o e o o 15,3%16.8
Dy ABeDAE sy & B T e w o A 8.0, 930
center of gravity, in. « « ¢« ¢« « o 35.5 35,36

Comparison With Experimental Results

The theoretical natural free-free modes and
frequencies of the bulilt-up delta wing specimen were obtained
by applying a matrix iteration to equation (32), for the
symmetric modes and frequencies, and to equation (36), for
the antisymmetric modes and frequencies. The first four
frequencies obtained from these equations along with the
experimental frequencies and the percentage error are

listed on the next page.
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Symmetric Frequenciles Antlsymmetric Frequency
Mode ?ﬁgé. g?:;?. % Mode Eﬁgé. g?:gf. %
cps eps error cps cps error
1st L3.3] L6.38| T.12| 1st 52.2| 56.70| 8.43
2nd 88.8} 105.3 | 18.58 | 2nd 91.7 | 103.L | 12.77
2rd | 122.8| 149.9 | 22.05 | 3rd | 131.1| 166.6 | 27.08
Lth | 16L.2 | 210 27.72 | hth | 169.2 | 216.5 27.95~
The mode shapes as well as the frequencles were

obtained in the matrix iteration. However, the mode shapes

obtained from the matrix iteration were the V¥ coefficlents., -
These coefficlents, for the first four symmetric and anti-
symmetric modes, are tabulated in Table XI.

The node lines were found by setting the deflection

equal to zero and solving for the chordwise location of zero

deflectlon,

*Om

& x"lm = x2*2111 =0

or the following equation was solved for x

A plot of the theoretical and experimental node lines for

the symmetric modes 1is given in Figure 6 and for the

antisymmetric modes in Figure 7.



TABLE XI

THE V¥ COEFFICIENTS FOR SYMMETRIC AND ANTISYMMETRIC MODES

Sintion First symmetric mode First antisymmetric mode Second symmetric mode Second antisymmetric mode
- Voi | ¥y x 102 vmx1& Vor |V x 107 wz_lxloh You ¥y 102 [ ¥, x 10* Vo, ¥y x 102 ¥, x 10t
0 -1.4965 2.4599 -0.5541 0 0 0 0.7358 -1.7959 1.4878 0. 0 0
il -1.3885 2.3452 - 5397 | -0.0312| o0.5752 0.0017 .6889 | -1.8697 1.5642 0.3181 | -0.6477 | - 0.0030
2 -1.0724 2.0242 - .5249 - 115kl 1.31351 = 1592 L5644 -2.1403 1.8575 .6018 -1.3888 .1913
3 - .5262 1.5006 - .5695 - .2687] 2.1039 - .2562 36Uk -2.5116 2.1927 . 7396 -1.9110 4005
s .2606 .T709 - L7284 - 5137 | 2.8935 - .2058 .121h -2.9068 2.3618 .6272 -1.9885 .5835
5 1.2694 - 1266 -1.0453 - .8625| 3.6493 JA118 | - 1112 -%.2928 2.0978 .1908 -1.4828 .8543
6 2.4402 -1.1842 - .9527 -1.2995 | 4.3408 .6029 | - .2907 -3.5689 L6951 - 5527 = Jg515 1.4013
T 3.6945 -1.5109 -6.8700 -1.7963 | L4.5575 5.0698 3899 -3.8409 -3.2428 -1.5264 .3366 10.0000

5 Third symmetric mode Third antisymmetric mode Fourth symmetric mode Fourth antisymmetric mode

tation

i Vo | ¥ax 20 Lo a0t | ¥ feqyxae [ ¥ey xaot] 4o | ¥o, %10 Wﬁx1& ¥ | ¥q %207 [ Hny x d0*
0 -0.1201 -0.9259 1.5852 0 0 0 -1.0419 6.0315 - 6.1120 0 0 0

i - .0367 -1.1028 1.6473 -0.0643 | -0.1502 0.0042 | - .9018 5.4315 - 5.5649 | -0.0964 0.2070 | -0.0012
2 .1792 -1.5427 L.T752 - .1578 .2960 - 6281 |- .4795 3.4143 - 3.6438 | - .1062 .0798 .2517

5 4345 -1.9438 L =l - .2096 1.2590 - 1.8514 L1194 L0047 - .2265 | - .0097 - 3736 .6835
b 5669 | -1.9540 1.3760 | - .2107| 2.6305 - 3.3897 6753 | -k.1625 14,0920 1522 | - .9523 | 1.0543

5 369L | -1.2223 9849 | - .2266| 4.1626 - 4.3593 8517 | -7.4643 7.3826 2373 | -1.1913 | 1.0629
6 - 2817 .2893 LaT2TT - .3680 5.3467 - 2.1608 4059 -7.9363 6.157h L0574 - .5948 .9922
T -1.3968 1.9031 16.1250 - .7626 6.2547 10.0000 | - .6284 -6.0465 10.0000 | - .5128 L7359 9.6160

00T
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CHAPTER VI
DISCUSSION OF RESULTS

The theoretical frequencles obtained for the free-
free vibration of the bullt-up wing specimen do not compare
very well with the experimental frequencles. However, one
thing that should be noticed in the frequency comparison is
that the theoretical frequencies are always higher than the
experimental frequencies. A plot of the theoretical and
experimental frequencies for the first four symmetric and
antisymmetric modes 1s shown in Figure 8. From this Figure,
it 1s seen that the theoretical frequencies follow the exper-
Imental frequencies nicely, but that they become progres-
sively higher as the modes Increase. The reason for the
theoretical frequencies being too high can be due to two
things: (1) the structure of the wing, as predicted by the
Stein=-Sanders method, 1is too stiff, and (2) the mass of the
wing 1s too low. 1In deriving the stiffness matrix, Stein
and Sanders assumed that the spars and ribs could be repre-
sented by simple beam theory which neglects transverse shear
deflections. Also, the shear lag which exists in the cover
sheet 1s neglected. If the transverse shear deflections and
the cover sheet shear lag were taken into account, the fre-
quencles would be reduced with the frequencies of the higher

modes being reduced more than the frequencies of the lower

modes.,
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Although the wing mass used in the theoretlical
analyslis is almost the same as the measured mass, the mass
of air that surrounds the wing and is set in motion during
a vibration test was neglected 1n the analysis, If thils
mass of air were added to the wing mass, then the theoretical
frequencles would be reduced. Estimates show that the air
mass would reduce the first frequencies by about 5 per cent,
but would have a smaller effect on the higher frequencies.

Although the theoretical frequencies are much higher
than the experimental frequencles, 1t is seen from Filgures
6 and 7 that there is a remarkable agreement between the
theoretlcal and experimental node lines.

A source of error that has not been considered yet
1s the power serles used for the deflection shape. Since
only three terms were used, the deflection of the wing was
limited to a transverse displacement, twlst, and parabolic
chordwise curvature. It may be that three terms do not allow
sufficient flexibility of the structure and more terms
should be used; however, the excellent agreement between the
- theoretlcal and experimental node lines makes this possibility
unlikely.,

As a further source of errors we might look at the
me thods by which the Stein-Sanders equations were obtained.
In order to keep the algebra to & minimum, trapezoidal

Integration was used and derivatives were replaced by
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finite differences. For these procedures to be valld 1t is
necessary thaet the functlon to be lntegrated or differentlated
be falrly smooth. The integration involves the moment of
inertia and the deflectlon and derivatives of the deflection;
it 1s not expected that the integration wlll introduce much
error. However, the numerical gifferentiation which involves
the deflection and the derivatives of the deflectlion 1s likely
to cause large errors. This 1s especially true of the
derivatives of the V¥,,; coefficlients which as can be seen
In Teble XI do not form a very smooth curve, especlally for

the hlgher modes.



CHAPTER VII
CONCLUDING REMARKS

A comparison has been presented between the theoretlcal
and experimental natural free-free modes and frequencies of
a bullt-up delta wing specimen. The method of obtaining the
theoretical modes and frequencies was based on the Influence
coefflcient approach, where the influence coefficients were
obtalned from the Steln-Sanders method.

The results obtalned from the theoretical method show
that in all cases the theoretical frequencles were too high,
but that the agreement between the theoretical and experl-

mental node lines was excellent.
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APPENDIX A
DERIVATION OF STIFFNESS COEFFICIENTS

In the body of this paper the method used by Steiln
and Sanders in reference 7 to obtain the stiffness coeffi-
clents for a low-aspect-ratio wing has only been briefly
mentioned. It is t he purpose of this sppendlx to show In
‘greater detaill how the stiffness coefflclents as given by
equations (11) and (13) were derived.

As the energy approach was used and the wing was con-
sldered to be composed of cover sheets, spars and stringers,
and ribs, the first thing required is the strain energy
expressions of these components in terms of the deflection
of the neutral surface. If mn represents the lateral
deflection of the neutral surface, then the strain energy

expressions become, for the cover sheets

oxX JY, 3x2 ¥y
where
_ E
D = —1——2. <1.:uzu + tlzl>
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In which the subscripts u and 1 refer to the upper and

lower cover sheets, respectively. For the spars and stringers

2
1 Js 52?>
Mg = 5 EI dy
s 2(]; Jiay2

where yg 1s the end station and Ig 1s the moment of
Inertia of the sth spar or stringer. In the above energy
expression slanted spars and stringers have not been con-
sidered, but thelr effects can easily be accounted for by a

modification of this expression. For the ribs

where c¢(y,) 1s the length and I, 1s the moment of
Inertia of the rth rib.
The potential energy function of the transverse loads

of intensity p(x,y

) is
L Pc(y)
My = -I f p(x,y)n dx dy
0 Jo

The potentlal energy function which i1s to be minimized to

obtain the equllibrium equations is

RIS W
L ch s‘lTs I‘1'I'I. 1Tp

The method used by Stein and Sanders to minimize the

above expression 1s first to replace the spanwise integration
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by a summatlon in accordance with the well-known trapezoidal
rule. The expression for the deflectlion of the neutral
surface 1s then replaced by its equivalent power series and
the resulting derivatives written in difference form. Once
this has been done then the minimization process can be

applied to yleld a set of equations from the relatlion

o _ - g
0

nm

The resulting set of equations 1s expressed In matrix form
by equation (11) for the symmetric case and by equation (13)
for the antisymmetric case. The procedure for setting up
the matrix equations has already been shown in detall for a
straln energy term, for a spar or stringer, 1in Chapter IV
when one term in the power seriles 1s used.

Since the loads enter so predominantly into the
calculations 1t is felt worth while to conslder the minimi-
zatlon of the potential energy function of the transverse
loads for the symmetric case when three terms of the power
series for the deflection are used. In thils way it can be
seen how the loads, moments, and second moments enter into
the calculations. After the expression for the potential
energy functlion of the transverse loads is integrated by
using the trapezoidal rule and the deflection 1 replaced

by the power serles, the following expression 1s obtained
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(y
[ f o p(x,70) (x%00)ax +

e
j; P<X,Y1)(°01 Sty o
5 0 o0 2" p(x,yN)(d)ON + X°lN D OZN)dX
0
A minimization of wp with respect to 020 yilelds

bRt c(yg)
—E = - Z—f . p(X.yo)xzdx
0

For all the ¢®'s the above equation can be written in matrix

form as
le
::p =yt Eon
nm |
P3m
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where
an = Epn(ym)

in which
C(Ym) =
P, (¥,) = fo p(x,y )x ~ax

At the end stations, one-half the value of pn(ym) is used.,
This accounts for the one-half term which arises in the

trapezoidal integration.





